
A Study of Layout, Rendering, and Interaction
Methods for Immersive Graph Visualization

Oh-Hyun Kwon, Student Member, IEEE, Chris Muelder,Member, IEEE,
Kyungwon Lee,Member, IEEE, and Kwan-Liu Ma, Fellow, IEEE

Abstract—Information visualization has traditionally limited itself to 2D representations, primarily due to the prevalence of 2D displays
and report formats. However, there has been a recent surge in popularity of consumer grade 3D displays and immersive head-mounted
displays (HMDs). The ubiquity of such displays enables the possibility of immersive, stereoscopic visualization environments. While
techniques that utilize such immersive environments have been explored extensively for spatial and scientific visualizations,
contrastingly very little has been explored for information visualization. In this paper, we present our considerations of layout, rendering,
and interaction methods for visualizing graphs in an immersive environment. We conducted a user study to evaluate our techniques
compared to traditional 2D graph visualization. The results show that participants answered significantly faster with a fewer number of
interactions using our techniques, especially for more difficult tasks. While the overall correctness rates are not significantly different,
we found that participants gave significantly more correct answers using our techniques for larger graphs.

Index Terms—Graph visualization, virtual reality, immersive environments, head-mounted display

Ç

1 INTRODUCTION

ONE of the key freedoms of information visualization
design is the opportunity to map arbitrary information

to screen space at will, allowing for great control over how the
data is presented. As most displays or representations are
two-dimensional, most information visualization techniques
limit themselves to two-dimensional mappings. That is, infor-
mation visualization approaches traditionally eschew 3D
techniques; 3Dvisualizations projected onto 2Ddisplays often
lead to occlusion and clutter issues. Better 2D representations
generally avoid this problem. However, such a limitation is
only applicable to 2D displays. The onset of ubiquitous, con-
sumer-level stereoscopic displays has prompted questions of
the potential effectiveness of 3D for information visualization
techniques.

Whereas 3D displays used to be rare and cost-prohibi-
tive, recent advances have made them ubiquitous enough
that they can be assumed to be available for general visuali-
zation approaches. The most common type of these displays
currently exists in the form of standard displays paired with
eyewear that reveals different images per eye, which is
either active (where an LCD over each eye alternates views
in sync with the display) or passive (polarization of light

differs per eye). However, even these displays limit the
user’s view to a small rectangular window encapsulated by
the display area. While numerous information visualization
techniques exist to visualize large data with limited display
space, screen area still presents a concrete limit, particularly
since the human eye is capable of utilizing a much larger
field of view (FOV).

Larger displays such as powerwall displays or CAVE
systems [1] aim to make use of the full range of human
vision, and enable nigh unlimited immersive techniques,
but these systems are often too expensive and bulky space-
wise to build, as they require a large number of displays,
and massive amounts of processing power to drive them all.

Head-mounted displays (HMDs) have recently become a
popular alternative. In recent years, a number of HMDs are
released or announced to be released including Oculus Rift
[2], HTC Vive [3], Sony PlayStation VR [4], Google Card-
board [5], Samsung Gear VR [6], and Microsoft Hololens
[7]. With these devices, a small, but high resolution display
is placed directly in front of the user’s eyes, such that each
eye’s view can be tightly controlled. Thus, it is unnecessary
to show the entire scene; only the user’s view needs to be
rendered. Due to recent rapid improvements in features
such as pixel density, high refresh rate, and low latency
head tracking, HMDs have quickly become both feasible
and affordable. Consumer-grade HMDs are quickly nearing
a point where they can be treated as commodity hardware.
These devices create immersive environments at a fraction
of the cost of large display systems. The ubiquity of such
devices enables a multitude of visualization possibilities.

Immersive scientific visualization techniques have been
well explored, as 3D environments are ideally suited for 3D
immersion.As such, scientific visualization has been a driving
force behind the development of virtual reality systems.How-
ever, investigation into the applicability of such immersive
environments for non-spatial data has been extremely sparse.

! O.-H. Kwon is with the Department of Computer Science, University of
California, Davis, Davis, CA 95616, and the Ajou University, Suwon,
Korea. E-mail: kw@ucdavis.edu.

! C. Muelder and K.-L. Ma are with the Department of Computer Science,
University of California, Davis, Davis, CA 95616.
E-mail: cwmuelder@ucdavis.edu, ma@cs.ucdavis.edu.

! K. Lee is with the Department of Digital Media, Ajou University, Suwon,
Korea. E-mail: kwlee@ajou.ac.kr.

Manuscript received 28 July 2015; revised 14 Jan. 2016; accepted 17 Jan. 2016.
Date of publication 21 Jan. 2016; date of current version 1 June 2016.
Recommended for acceptance by T. Dwyer, S. Liu, G. Scheuermann,
S. Takahashi, and Y. Wu.
For information on obtaining reprints of this article, please send e-mail to:
reprints@ieee.org, and reference the Digital Object Identifier below.
Digital Object Identifier no. 10.1109/TVCG.2016.2520921

1077-2626! 2016 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

1802 IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, VOL. 22, NO. 7, JULY 2016

Even the concept of employing stereoscopy for non-spatial
data has had limited exploration [8], [9]. In fact, previous
research has found that stereoscopic representations are par-
ticularly helpful for graph visualization in certain tasks [10],
[11], [12], [13], though these approaches limit themselves to
traditional rectangular displays.

Following a preliminary study of ours [14] which intro-
duced the layout and edge routing approaches that are the
basis of this work, we are further concerned with the appli-
cability of immersive virtual reality environments to graph
visualization. In this paper, we present a novel study of lay-
out, rendering, and interaction methods for immersive
graph visualization. Specifically, the primary contributions
of our work are:

! More complete description and discussion of the lay-
out methods and the edge routing techniques com-
pared to our preliminary study [14].

! Rendering techniques for enhancing clarity and
highlighting techniques to better support interaction
with the graph visualization.

! A user study for comparing different layout methods
using a number of common graph exploration tasks
in an immersive environment.

The results of the user study show that traditional 2D
graph visualization are ill suited for immersive environ-
ments. Methods specifically designed for immersive graph
visualization like ours are in need. In this manner, we have
not only established an improved understanding of the
effectiveness of the immersive graph visualization, but also
posited general guidelines for future immersive visualiza-
tion approaches.

2 RELATED WORK

Virtual reality and stereoscopic techniques have a long his-
tory of being used in scientific visualization [15], [16], [17],
applied to GIS data [18], volume data [19], and medical
imaging data [20]. When the data has a 3D spatial attribute,
such techniques are a natural fit.

The use of 3D in information visualization has been dem-
onstrated for a long time [8], [21]. However, most existing
3D information visualizations are displayed on 2D displays
with the monocular depth cues such as perspective, occlu-
sions, motion parallax, and shading [22], [23]. Stereoscopic
3D displays provide one additional important depth cue:
binocular disparity. Stereoscopy has been shown to be benefi-
cial for some information visualization tasks [9]. Notably,
stereoscopy has been shown in multiple user studies to be
effective for graph visualization tasks [10], [11], [12], [13].

The earliest study on using stereoscopy for graph visuali-
zation was done by Ware and Franck [24]. They considered
general low-level tasks for graph analysis such as identifying
paths between two highlighted nodes, and found that stere-
oscopy with head tracking outperforms those in 2D condi-
tion. About ten years later, Ware and Mitchell [10], [11]
conducted similar studies but in a higher resolution display.
They found that participants showed less error rates with
both motion parallax and stereoscopic depth cues, and
stereoscopic viewings showed faster response times, regard-
less of the motion parallax. A more recent study done by
Alper et al. [12] showed the effectiveness of stereoscopic

highlighting techniques for 2D graph layout. While there
was no significant difference between the stereoscopic
highlighting and static visual highlight (color), participants
performed better when both highlighting were used
together. Halpin et al. [25] used an immersive system, but
they still used a standard euclidean layout and employed the
stereoscopy just for highlighting. Barahimi and Wismath
[26] used HMD to view a 3D layout. In most of these studies,
the graph is generally looked at from outside so that they
often requires lots of viewpoint navigation and cluttered.

To keep the user’s viewpoint equidistant to most of the
display area, immersive environments can be modeled very
naturally with a spherical or a cylindrical paradigm, with
the user at the center. While there are lots of 3D graph lay-
out approaches [27], few graph layouts work in a spherical
space [28], [29], [30], [31], [32] because most existing graph
layouts perform their calculations in the standard euclidean
space. Kobourov and Wampler [32] introduced a force-
directed method to calculate a graph layout in an arbitrary
Riemannian geometry. Hyperbolic graph layout works in a
spherical space [33], but nodes/edges would go through
the user’s view in the center of the sphere. Wu and Takat-
suka [31] used a self-organizing map to place a small graph
on a sphere, but this is based on multidimensional node
properties. While these methods work in the spherical
space, they are not designed to be looked at from the inside
of the sphere.

In graph visualization, one challenge is how to effectively
handle large number of edges. Edge bundling techniques
[34], [35], [36] are common methods for routing edges to
avoid clutter. While 3D layouts can eliminate many edge
crossings by utilizing the additional dimension, conveying
the depth of the edges presents an additional challenge. The
studies of vector field visualization and diffuse tensor imag-
ing techniques have explored this same problem. One basic
technique is to illuminate the lines [37], [38]. To add the effect
of global illumination, ambient occlusion may be used as
done by LineAO [39]. It has also been shown adding halos
can help enhance perception of relative depth between lines
[40], [41], [42], though halos do not work for dense lines.

3 METHODS

In an immersive environment, the visible scene is arranged
omnidirectionally around the user’s viewpoint. As much of
the scene will be out of the user’s view at any time, this nat-
urally evokes exploration through head motion. Performing
such navigation comfortably is often limited by the range of
motion of the user’s neck, which is often relatively fixed
positionally, but flexible angularly (e.g., in a seated usage).
Therefore, visibility of the scene from the perspective of the
user’s viewpoint is vital. However, traditional 3D graph lay-
out often requires lots of spatial navigation in order for the
user to find viewpoints that are good for perceiving depth
and comprehending the structure of the graph [12]. To
improve on this, it is important to find or create an ideal
viewpoint that does not require the user to perform such
heavy navigation [13]. Our approach targets this by using
graph layouts on the surface of a sphere and by placing the
user’s viewpoint at the center of the sphere (Fig. 1), so that
all nodes are equally visible to the user through angular

KWON ET AL.: A STUDY OF LAYOUT, RENDERING, AND INTERACTION METHODS FOR IMMERSIVE GRAPH VISUALIZATION 1803

motion alone. In order to reduce occlusions, edges are
routed outside the sphere in a bundled fashion (Fig. 2c).
Lastly, as graph rendering involves rendering large num-
bers of lines, we utilized dense line rendering techniques
from scientific visualization works (Fig. 2d).

3.1 Spherical Graph Layout
It is non-trivial to calculate the layout of a graph on the sur-
face of a sphere as it is non-euclidean space. While several
studies [28], [29], [30], [31], [32] introduced methods that
can calculate a graph layout on the surface of a sphere, most
existing graph layout algorithms are designed for 2D euclid-
ean space. Thus, while dedicated spherical graph layouts
are possible, this paper focuses on methods of effectively
mapping existing 2D graph layout approaches to the surface
of a sphere, in order to maximize the utilization of existing
graph works.

While the surface of a sphere is also a 2D space, it is
impossible to map a 2D euclidean geometry to the surface
of a sphere without distortion. The field of cartography has
explored map projections from a sphere to a plane fairly
extensively [43]. To map a 2D graph layout to the surface of
a sphere, we need a process that calculates the inverse of
such map projections (i.e., that maps locations on a plane to

locations on the surface of a sphere). Of the numerous kinds
of map projections, we focus on gnomonic and stereo-
graphic projections, because they provide continuous map-
pings to arbitrary planes, and have well defined distortions
that can be compensated for. We also used spherical coordi-
nates and a cubed sphere as additional ways to map 2D lay-
outs onto the sphere’s surface.

3.1.1 Gnomonic Projection

In a gnomonic (or rectilinear) projection, a hemisphere is
projected from its center radially outward onto a plane that
is tangent to the hemisphere at a point. One advantage to
this projection is that great circles are projected to straight
lines on the plane, i.e., a straight line on the plane is a geode-
sic arc on the sphere. Gnomonic projection (Fig. 3a) projects
a point p on the surface of a sphere from the center c of the
sphere to point qg on a tangent plane of a point o [46]. This
projection can only be used to project one hemisphere at a
time because it projects antipodal points p and p0 to the
same point qg on the plane.

Let us consider a unit sphere in R3. There is no distortion
at the tangent point o, but distortion increases the further a
point is away from o. The geodesic arc bop on the sphere cor-
responds the line segment oqg on the plane. By considering
the points o, c, and qg as a right triangle, the length of oqg is
tana. The result of this is that in a naive, direct mapping
the points from the plane to the surface of a sphere, the
points further away from o become compacted on the

Fig. 1. The viewer is placed at the center of the sphere, on which the
graph is laid out.

Fig. 2. Layout and rendering strategies. (a) place nodes on the surface of a sphere; (b) employing spherical edge bundling; (c) adding depth routing;
(d) adding illumination. The detail views of the red rectangle can be found in Fig. 8.

Fig. 3. Spherical projection geometry. Linear distances in the plane are
not linear on the surface of the sphere (gray lines).

1804 IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, VOL. 22, NO. 7, JULY 2016

sphere, as can be seen in Fig. 4a. Therefore, before mapping
a point from the plane onto the sphere, we compensate for
this by normalizing the point and then distorting them radi-
ally according to q0g ¼ oþ tan kuk $ û, where u ¼ qg % o.

While this is good at preserving radial distances, one limita-
tion of direct application of this mapping is that it does not
preserve angles or straight lines. This becomes especially
apparent with rectangular input layouts (such as a treemap-
based layout [44]). This angular distortion can be seen in the
corners in Fig. 4b. Also, the FOV available for the graph is
limited because corners get wrapped much further around
the sphere than the sides, so this mapping is limited by
extrema in the layout, such as corners or outliers. Thus, this
specific mapping works best with roughly circular layouts.
If the layout is more circular and less dependent on
straight-line boundaries (as in many force directed layouts
or the Gosper curve based layout [45]), the angular preser-
vation is less of an issue.

As a compromise, we also employ the option of warping
the x and y dimensions independently as x0 ¼ tanx and
y0 ¼ tan y before mapping, as demonstrated in Fig. 4c, In
this manner, corners are not overly extended. Also, horizon-
tal or vertical lines are preserved as perceptually linear arcs
along the surface. However, distortions in area will increase
as the FOV increases. Notably, the area of regions near the
bounds of a rectangular area would shrink to zero as they
near the hemisphere boundary, meaning this approach is
only really useful for relatively narrow FOV. In practice,
this approach is best suited to a limit of 120 degree FOV for
the graph.

3.1.2 Stereographic Projection

Stereographic projection [46] projects a point p on the sur-
face of a sphere to the point qs on the plane tangent to the
sphere at point o along a ray originating from the antipodal
point n opposite o, as illustrated in Fig. 3b. Similar to gno-
monic projection, stereographic projection offers very pre-
dictable and analyzable distortion. Unlike gnomonic
projection, stereographic projection is good at preserving
angular properties. Notably, circles on the sphere that do
not pass through the point n are projected to circles on the
plane and vice-versa.

As in gnomonic projection, regularly spaced points in a
euclidean space would be skewed when projected to spheri-
cal space, as can be seen in Fig. 4d. Unsurprisingly, this fol-
lows the same tangential law as gnomonic projection, so the
same correctional options are applicable. However, one big
difference between gnomonic projection and stereographic
projection is that the angle b in stereographic projection is
half of the angle a in gnomonic projection. Thus, we can

either warp the plane radially by q0s ¼ oþ tan kvk
2 $ v̂, where

v ¼ qs % o, or warp the x and y dimensions independently
as x0 ¼ tan x

2 and y0 ¼ tan y
2.

3.1.3 Spherical Coordinates

Another straightforward method is mapping 2D coordi-
nates ðx; yÞ to spherical coordinates ðf; uÞ. The major differ-
ence between this and the projection-based approaches is
that in spherical coordinates, all points along the equator
are undistorted, but the distortion increases toward the

Fig. 4. Mapping 2D graph layouts to the surface of a sphere. The upper two rows of images are what the user sees, and the bottom row of images
show the mapped grid points on the sphere surface. The top row of images show the corner area of treemap-based layout [44]. The middle row of
images show Gosper curve based layout [45] as an example of roughly circular layout.

KWON ET AL.: A STUDY OF LAYOUT, RENDERING, AND INTERACTION METHODS FOR IMMERSIVE GRAPH VISUALIZATION 1805

poles. As shown in Fig. 4e, points near the poles are greatly
compacted. Unlike in previous approaches, this distortion
is not as simple to account for. However, by limiting the
range of the vertical angular axis, the consequences of this
distortion can be minimized. While this limits the vertical
range of space that is utilized, it still allows the use of up to
the full 360 degree horizontal range.

3.1.4 Cubed Sphere Mapping

For a completely immersive layout, the nodes should be dis-
tributed roughly evenly in all directions, not just on the
front hemisphere. One of the best ways we found to do this
was to employ a cubed sphere, where a graph layout is cal-
culated onto a cube, and then each face of the cube is
mapped onto the sphere. As the gnomonic projection, the
grid cells of each cube face are warped with a tangent func-
tion. Because of the rigid boundaries, it is imperative to pre-
serve straight lines, as the interfaces between the faces
should be contiguous. Thus, we warp the x and y dimen-
sions independently forming what is commonly referred to
as an equiangular cubed sphere [47].

The space-filling curve layout then maps very nicely to
this approach, as a space-filling curve can be defined on the
surface of a cube as six planar space-filling curves, one each
face, that are still contiguous as one single curve [47]. To
compute this layout, we break the graph into 6 sections, lay
out the nodes for each section in a separate plane, warp
their x and y values according to a tangent function, and
finally map each plane onto the appropriate face of the
cubed sphere. This ensures an even distribution of nodes
over the entire surface, while preserving cluster locality.

3.2 Field of View Variation
The one thing all the spherical mappings have in common is
that there is flexibility in the range of the sphere to utilize.
That is, the layout algorithm has control of how much FOV
to utilize for the graph.

One important aspect to consider is the range of motion
of the user’s neck (cervical spine). Particularly when the
users seated, they often look forward, and to the left and
right without moving their torso. Also, the visual density of
a graph should be considered to determine appropriate

FOV for the graph. Too wide of an FOV can be overly stren-
uous to the user, and can hide parts of the graph in regions
the user might not even see. Conversely, too narrow FOV
can be overly cluttered and less immersive. So it is generally
better to limit the FOV of the layout to be within the average
range of motion of neck, unless the graph is complex
enough to benefit from wide FOV.

There are several criteria to measure this range. We used
what is referred to as the active range of motion (the range
of movement through which a person can actively move the
joint without any assistance). Several studies [48], [49] show
that the vertical range of the motion of is roughly 50 degree
upwards (extension) and 60 degree downwards (flexion),
and the horizontal range left and right are around 80 degree
each. Thus, the maximum range to limit ourselves to should
be around 160 degree horizontal by 100–110 degree vertical.
We confirmed this during our pilot study, where we found
that the users were not comfortable near or over these lim-
its. So, in our evaluation of the effect of FOV within these
limits we used layouts at three FOVs: with horizontal FOVs
of 150, 120, and 90 degree, each with a 16 (9 aspect ratio.

3.3 Edge Bundling
Edge bundling techniques [34], [35], [36] are frequently used
to improve the legibility of dense or complicated node-link
diagrams. The main difference between these techniques
lies in how the curves of the edges are calculated. These
techniques use curves such as Bezier curves, B-splines, or
Catmull-Rom splines to route edges along control points.
We apply a variant of hierarchical edge bundling [34] to our
immersive graph visualization.

Direct application of edge bundling to a spherical layout
using computations in 3D euclidean space would not work
well for our purposes, as the bundles would run through the
inside of the sphere close to the viewer, obscuring the nodes
of the graph. Rather, just like the layout of the nodes, we route
the edges around the surface of the sphere instead. In addi-
tion, we also route edges away from the outside of the sphere
according to the clustering hierarchy, with the edges that has
longer path along the clustering hierarchy routed further
away from the sphere than short ones, in order to improve vis-
ibility when viewed from the inside of the sphere.

Fig. 5. Spherical graph layouts: 2D layouts can be mapped to the sphere with some amount of distortion. Preserving angles with independent axis
corrective mapping (a) is appropriate for rigid, rectangular structures, but is limited in FOV. Radial corrective mapping (b) works well for roughly circu-
lar layouts on a hemisphere. For full immersion (c), we use a space filling curve defined on a cubed sphere to cover the entire surface.

1806 IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, VOL. 22, NO. 7, JULY 2016

3.3.1 Spherical Edge Bundling

The first step is to route the edge on the surface of the
sphere. That is, given the start point, end point, and a set of
intermediate control points, all on the surface of the sphere,
we want to compute a cubic B-spline that also lies on the
surface. Most spline calculation algorithms are defined
using linear interpolation in euclidean space, such as de
Boor’s algorithm [50]. In the euclidean space, a B-spline is
calculated using de Boor’s algorithm as:

pjiðtÞ ¼
LERPðpj%1

i%1ðtÞ; p
j%1
i ðtÞ; rjiÞ if j > 0

pi if j ¼ 0

(

where rji ¼
t%ti

tiþk%j%ti
;

LERPðp0; p1; tÞ ¼ ð1% tÞp0 þ tp1:

(1)

However, linear interpolation in euclidean space would
fail to compute correctly on the surface of a sphere, as
would linear interpolation in spherical coordinates, as the
surface of a sphere is non-euclidean. In this work, we used a
modification of de Boor’s algorithm that use spherical linear
interpolation (SLERP [51]) instead of euclidean linear inter-
polation to calculate splines on the surface of a sphere,
which is defined as:

SLERPðp0; p1; tÞ ¼
sin ð1% tÞu

sin u
p0 þ

sin tu

sin u
p1;

where u ¼ arccosðp0 $ p1Þ:
(2)

Replacing the euclidean linear interpolation with the
spherical linear interpolation in de Boor’s algorithm yields a
spherical B-spline:

pjiðtÞ ¼
SLERPðpj%1

i%1ðtÞ; p
j%1
i ðtÞ; rjiÞ if j > 0

pi if j ¼ 0

(

where rji ¼
t% ti

tiþk%j % ti
:

(3)

In this manner, the spline is smooth from the perspective
of the user in the center of the sphere. While several studies
[52], [53] have introduced more complex methods, we
found de Boor’s algorithm with SLERP to be sufficient, and
it is relatively simple and computationally efficient enough

to recompute upon interaction. An example of such a spline
is shown as the yellow curve in Fig. 6, which is computed
according to the red control points.

3.3.2 Depth Routing

Bundling edges using spherical splines improves the legibility
of the spherical graph layout equivalent to edge bundling in
traditional 2D layouts. But it places all edges at the same
distance from the user’s viewpoint, which not only causes
edge crossings which could be avoidable, but also fails to take
advantage of depth perception capabilities of stereoscopy.

So in addition to the spherical spline computation, we
also calculate a 1D depth spline to route the edges depth-
wise by raising the spline off the surface of the sphere by
modulating the distance of the sample points with the sam-
ples of the depth spline. Each control point corresponds
with a node in the clustering hierarchy, so we calculate the
depth spline according to the height of the corresponding
cluster node (i.e., distance in the cluster hierarchy from the
cluster node to its deepest leaf node).

We calculate the distance from the center of the sphere to
a each control point of the depth spline u in the clustering
hierarchy as du ¼ rð1þ oþ s $ hp

uÞ, where r is the radius of
the sphere, o is an offset value, s is an scale value, p is an
exponent value, and hu is the height of the node u in the
hierarchy. The offset value o (Figs. 7a and 7b) determines
how much deep to route edges between nodes within the
same cluster. Figs. 7c and 7d shows the effect of the expo-
nent value p. By varying the offset value o, the scale value s
and the exponent value p, we can fine-tune the edge bun-
dling to improve the clarity of the visualization.

In this manner, an edge is routed up the clustering hier-
archy, moving further away from the user’s viewpoint up

Fig. 6. Hierarchical edge bundling routes edges with splines that follow
the clustering hierarchy. Each control point corresponds with a cluster
node in the hierarchy. We compute the edge spline in two stages. A
spherical spline (yellow) is calculated with a spherical B-spline according
to the control points on the surface (red). Then, we calculate the 1D
depth spline according to the height of the corresponding cluster nodes
in the clustering hierarchy (blue). Finally, the spherical spline is extended
radially (green) by applying the depth spline.

Fig. 7. Depth routing parameters. By varying the offset, the scale value,
and the exponent value, we can fine-tune the edge bundling to improve
the clarity of the visualization.

KWON ET AL.: A STUDY OF LAYOUT, RENDERING, AND INTERACTION METHODS FOR IMMERSIVE GRAPH VISUALIZATION 1807

to the least common ancestor cluster, and then back toward
the user as it traverses down the other side of the clustering
hierarchy. The result of this is that the longer, inter-cluster
bundles are also the furthest away from the user, while
shorter, more intricate structures remain close to the view-
point. While closer edges occlude other edges from the
user’s viewpoint, the edges with the depth routing (Fig. 8b)
are longer, and bundled, making them easier to perceive.
Also, the legibility is improved even further with illumina-
tion techniques, as shown in Fig. 8c.

3.4 Rendering Techniques
Rendering dense bundles of lines has been well studied for
scientific visualization, such as diffusion tensor imaging or
streamline visualization. As such, there are numerous tech-
niques available that could be applied to graph visualiza-
tion, such as illuminated lines [37], [38], halos [40], [41], or
LineAO [39].

LineAO [39] is particularly effective since it is both utile
and efficient. It emphasizes both local structure and global
structure using multiple hemispheres of different radius for
ambient occlusion sampling. To enable maximum frame
rate of our implementation, we simplified LineAO to using
two hemispheres of two radius (local and global). Fig. 8
shows our simplified LineAO result.

Standard line rendering produces unintuitive perceptual
cues at close distances. Specifically, any strand-like object in
the real world will appear larger at close distances and
smaller when far away. In order to convey this, simple line
rendering is not nearly sufficient. As such, we have to
employ tube rendering techniques, so that the width and
shading will correspond correctly with depth. In order to
maintain efficiency, pumping large amounts of geometry
through the rendering pipeline would be counterproduc-
tive. So instead, we utilize geometry shaders to expand lines
into depth-dependent quads, and use pixel shaders (or frag-
ment shaders) to compute the appropriate normals. For dis-
tant (sub-pixel) edges, standard line rendering is still used
both to increase the performance, as lines are simpler to
compute, and to avoid sub-pixel rasterization issues, such
as culling the polygons of the edges entirely.

While a graph visualization should benefit from any
number of these techniques, there are critical performance
limitations to consider. Current HMD rendering techniques
require to render two views separately, one for each eye,
which leads to significant performance drop. For a HMD,
high frame rate and low latency tracking system are both of
critical importance in order to avoid inducing nausea in the
user. As such, it is imperative for a visualization to run with
frame rate as close to the display’s refresh rate limit as

possible. The current generation of Oculus Rift, (DK2), runs
at 75 Hz, and future HMDs will run at 90 Hz or higher. To
get a high frame rate while still attaining good rendering
quality, we used Unreal Engine 4 [54] to employ real time
rendering technologies which have been extensively opti-
mized by the game industry.

3.5 Interaction Techniques
Interfaces within HMD environments is an area of many
open challenges and opportunities. Since the user loses
direct sight of their hands fromwithin the device, traditional
mouse and keyboard interaction is limited. While hand
tracking devices such as Leap Motion [55] are gaining popu-
larity in conjunction with virtual reality environments, we
found that the currently available generation of the hand
tracking devices were not well suited to the tasks of our user
study, and users are not as familiar with them as they are
with traditional input devices. Thus, we still wanted to use a
basic cursor paradigm, asmost users are familiar withmouse
interaction. In all cases, the 3D selection follows a ray from
the center of the view through the cursor.

We considered three methods of controlling a cursor
within a HMD environment:

! Cursor follows center of the user’s view, without
mouse control

! Cursor follows relative to the user’s view, with
mouse control

! Cursor does not follow the user’s view (stay in the
world), mouse control only

The first (and simplest) of these options is to lock the
cursor to the center of the user’s view. Then, the cursor is
moved entirely via head tracking. This is the simplest
method since it eliminates the need for additional mouse
control, other than simple button interactions. Also, the cur-
sor will always be in the user’s view. However, there is no
freedom to change the cursor position while maintaining a
particular view, and precision requires precise neck motion
which can tire the user.

The second method option is to still have the cursor track
with the user’s view, but to use the mouse to move the cur-
sor within the view. This offers the advantages of keeping
the cursor always in the user’s view, while allowing the
user to fine tune the mouse with a traditional mouse input.
However, in our pilot study the users found this method to
be confusing. When having the cursor’s position depend on
both head motion and mouse movement, the cursor to
move a lot, often in unintuitive ways. Also, when user
changes their view while the cursor is periphery of the
view, many unexpected and distracting interactions occur.

The last option is to control the cursor via the mouse rela-
tive to the fixed spherical space, regardless of the user’s
view direction. This is the most similar to the 2D displays
that users are used to, because in traditional desktop envi-
ronments, the cursor keeps its position on the 2D screen
space even when user looks at different portions of the
screen. However, the downside to this approach is that the
cursor can leave or be left outside of the user’s view. To
counter this, when the cursor is outside of view frustum,
we show an arrow that pointing cursor’s position, and we
added a key shortcut to reset the cursor’s position to the
center of the user’s view. Our pilot study found this

Fig. 8. Depth routing and rendering techniques.

1808 IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, VOL. 22, NO. 7, JULY 2016

approach to be the most effective, so we used this option for
our user studies.

3.6 Interactive Highlighting
The cursor provides a method of interacting with the graph,
but there is also flexibility in how to represent interactions
such as inspection, highlight, or selection. We utilize a mod-
ified variant of an existing stereoscopic highlighting tech-
nique [12] combined with our depth routing techniques and
smooth animated transition to better utilize stereoscopic
depth cues.

As shown in Fig. 9a, the edges are routed outside of the
sphere before highlighting. When a node is highlighted
(Fig. 9b), the highlighted node is moved closer to the user’s
viewpoint which is the center of the sphere. Also, its adjacent
nodes are brought closer to the user too, but no more than
the highlighted node. The edges that have a highlighted
node are also brought closer to differentiate them from other
edges. To do this, we transform the depth spline for edge
routing of the highlighted edges to be in between the default
layout sphere and the focal sphere to bring the edges closer
naturally, reducing occlusion or edge crossings for the
highlighted edge. The overall effect is that the highlighted
nodes/edges are easily distinguished from the remainder of
the graph, and the immediate connections are easy to visu-
ally follow to their destinations. To further accentuate this,
we can apply a halo technique to the highlighted edges.

Multiple nodes/edges can be highlighted and brought
into the focal sphere, allowing the user to explore any
potentially interesting paths or relations that they find. To
emphasize the edges between the highlighted nodes, we
remove the depth routing and set the depth to be the same
as the highlighted nodes, so that the entire edge spline is on
the focal sphere (Fig. 9c). We implemented these depth

routing changes with smooth animated transitions for user
can keep the track of nodes and edges.

We brought a node closer to the user when they are
highlighted it (see Fig. 10). In spherical layouts (Fig. 10b),
the direction of ‘getting closer’ is same as the direction from
the node to the viewpoint. Thus, any other interactions on
the highlighted node can be performed without moving the
cursor again. In a 2D layout (Fig. 10a), however, if you high-
light a node then the position of the node changes in the
user’s view. So the user needs to move the cursor each time
they re-interact with the highlighted node. In fact, the
highlighted node in a 2D layout can move to the outside of
the user’s view.

4 USER STUDY

The main purpose of our user study is to evaluate the use of
spherical graph layouts and depth routing techniques in
immersive graph visualization. The findings from a prelimi-
nary pilot study helped set up this study. For example, we
found that for many participants, some tasks were either
too simple or difficult preventing us from obtaining mean-
ingful results. We also learned that cursor movement for
selection should follow mouse movement alone and not
depend on head movement. Furthermore, the preliminary
study helped find how best to properly label the graph dur-
ing viewing. These findings enabled us to remove unwan-
ted factors that would impact the performance of the
participants in the new study. The pilot study also helped
us narrow the scope of the new study; we dropped the com-
parison of different displays [56] and focused on the specif-
ics of using a HMD.

4.1 Experiment Design
For our study, we designed a within-subjects experiment: 3
visualization conditions(3 graph sizes(4 tasks. We evaluated
three dependent variables in the study: task completion time,
correctness rate, and number of interactions. Task completion time
does not include the time to read the task description. Cor-
rectness rate is the percentage of tasks correctly answered.
Number of interactions counts the number of pointing (mouse
over on a node), number of highlighting (left click on a
node), and number of selecting (right click on a node).

4.1.1 Visualization Conditions

We considered three visualization conditions:

C1: 2D graph layout. The graph is laid out on the plane.
C2: Spherical graph layout without depth routing. The

graph is laid out on the surface of a sphere.

Fig. 9. Highlighting technique; the upper row of figures are external views
for illustration and the lower row of figures are user’s views. (a) Before
highlighting, nodes are laid out on the sphere’s surface. (b) On highlighting,
a node and its neighbors are brought closer to the user, with the highlighted
node closer than its neighbors. (c) If two nodes are highlighted, an edge
between them is also brought in to the closest focal depth.

Fig. 10. Stereoscopic highlighting technique [12] on 2D graph layout
(a) and spherical graph layout (b).

KWON ET AL.: A STUDY OF LAYOUT, RENDERING, AND INTERACTION METHODS FOR IMMERSIVE GRAPH VISUALIZATION 1809

C3: Spherical graph layout with depth routing. The
graph is laid out on the surface of a sphere.

All conditions used our modified stereoscopic highlight-
ing [12], and the same rendering techniques (Section 3.4).
All participants used a HMD, which is an Oculus Rift DK2.
Graph labels always face toward user’s viewpoint with the
same size.

With the 2D graph layout, we decided not to use depth
routing for several reasons. First, depth routed edges are
skewed (or narrowed) toward the view direction as a result
of perspective distortion. This can be resolved by calculat-
ing the depth routing in view space, but if the view changes
then the shape of depth routed edges is also changed, which
introduces more confusion to the users. Also, the shape of
depth routed edges seen by the participant would not be
natural if the view direction is not perpendicular to the 2D
graph. If we used orthographic projection to render, the par-
ticipant would lose the depth perception.

In conditions without depth routing (C1 and C2), we
assigned the control points of the 1D depth spline for edge
routing (i.e., clusters along a path) by linear interpolation of
the depth of the two nodes of the edge.

4.1.2 Tasks

We used four tasks in the study:

T1: Find common neighbors. Select all nodes that are com-
mon neighbors of two given nodes, not just one or the other.
The participant can find common neighbors by first
highlighting the two given nodes, then look at which
nodes have edges connected to the given nodes.

T2: Find the highest degree node. Among four given nodes,
select the node with the highest degree (most neighbors).
User can count the neighbors of each given node by
highlighting it.

T3: Find a path. Find an ordering of a given set of nodes
which forms a path along edges from node A to node B,
visiting each node once. The participant was given a
start node, an end node, and three other labeled
nodes, and instructed that there exists a path that
goes through them. The participant was then asked
to find the order of the nodes in this path.

T4: Recall node locations. Find the start node and the end
node used in the previous task. To compare the spatial
memory in different visualization conditions, we
asked users to remember the locations of the start
node and the end node given in T3.

The labels of given nodes are always shown during the
tasks, the labels of other nodes are hidden unless they are
pointed (mouse over), highlighted (left click), or selected
(right click).

4.1.3 Graph Size and Field of View

We used three different graphs with different data sizes
(i.e., the number of nodes and number of edges) and spatial
sizes (FOVs) for the experiment. One additional graph was
used for the training session. To keep the visual density of
the graph visualizations, we assigned the FOV of a graph
according to its size.

It is not necessary to follow the aspect ratio of the HMD
for the aspect ratio of the graph layout because the virtual

world has infinite space; however, we used 16 (9 aspect
ratio for all graph layouts according to the estimated range
of motion of the participant as discussed in Section 3.2.

The graph visualization was located at 10 meter away
from the participant’s viewpoint in the virtual world. Natu-
rally, the default view direction is the direction from view-
point to the center of the graph layout. Also, the 2D graph
layout (C1) is perpendicular to the default view direction.
The distance from the viewpoint to a node is equidistant in
a spherical graph layout (C2 and C3), and is closest at the
center of a 2D graph layout while the distance increases
for nodes away from the center. The geodesic width of a
spherical graph layout (C2 and C3) is ru and the width of a
2D graph layout (C1) is 2 $ tanðu2Þ, where u is the horizontal
FOV of the graph.

The four datasets are:

D0: This graph [57] consists of 34 nodes and 78 edges.
The FOV of this graph is 60) (33:75). This graph
was used in the training session.

D1: The small graph [58] consists of 77 nodes and 254
edges. The FOV of this graph is 90) (50:625).

D2: The medium graph [59] consists of 116 nodes and 615
edges. The FOV of this graph is 120) (67:5).

D3: The large graph [60] consists of 297 nodes and 2359
edges. The FOV of this graph is 150) (84:375).

4.2 Participants
We recruited 21 (12 males and 9 females) participants in our
user study. The age of the participants ranged from 21 to 34,
with the mean age of 25.71 years (SD = 3.96). The group con-
sists of 11 undergraduate students and 10 graduate stu-
dents. Each participant completed the experiment in about
60 minutes including initial setup, training session, and
questionnaires.

Nine participants have normal vision. Ten participants
wear eye glasses. Two participants wear contact lenses. All
participants are not color-blind. We adjusted HMD for each
participant. The participants wearing glasses used HMD
without glasses. However, they had no other vision condi-
tion than nearsightedness which can be resolved by adjust-
ing focal distance of HMD. None of the reported differences
in vision was statistically significant.

Only one participant had previous experience with
HMD. Nineteen participants had previous experience with
stereoscopic viewing from television or movie theater. Four-
teen participants indicated that they had seen a graph visu-
alization (e.g., a node-link diagram) before, and knew what
it is, but had never used it. Seven participants had no expe-
rience with graph visualization.

4.3 Apparatus and Implementation
For a fair comparison of different FOVs for graph visualiza-
tion, it is necessary to maximize the use of the given area for
graph layout. Therefore, the graph layout was calculated
using a treemap-based approach [44] in all visualization
conditions. To avoid learning effects between tasks, we
randomized the graph layout by randomly reordering
each level of the hierarchical clustering and randomly ori-
enting intermediate levels of the treemap by multiples of
90 degree. Nodes were labelled with a three-digit unique

1810 IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, VOL. 22, NO. 7, JULY 2016

random number to remove any possibility of the partici-
pants answering the questions from meaningful node
labels. The participants used a standard computer mouse
as an input device with the spherical cursor technique
described in Section 3.5.

The participants were seated in front of a desk and used
Oculus Rift DK2 [2]. The Oculus Rift DK2 has a 1920 (1080
px (split to 960 (1080 px per eye) OLED panel with a 75 Hz
refresh rate. NVIDIA GTX 980 graphics card was used to
render the visualization. The rendering was maintained at
about 75 frames per second. The positional tracking was
enabled only in C1 because the spherical graph layouts
(C2 and C3) do not require the positional tracking.

4.4 Procedure
Prior to the beginning of the experiment, we informed the
participants of possible issues (e.g., eyestrain, disorienta-
tion, or sickness) and right to exit the experiment at any
time. The participants had no time limit for the tasks.

Before each experiment, we adjusted the HMD (for the
distance between the pupils of each eye and the distance
between HMD lens and the cornea) for each participant. We
showed a demo scene about 3 minutes to the participants to
identify any issue (e.g., lack of depth perception, eyestrain,
disorientation, or sickness) with the HMD. None of the par-
ticipants had any issue with the HMD.

4.4.1 Training

We first instructed the participants about how to use three
interaction techniques, pointing (mouse over), highlighting
(left click), and selecting (right click). The participants was
asked to point, to highlight/dehighlight, to select/deselect
specific nodes that the experimenter asked to do so. Each
participant first conducted 12 training trials (3 visualization
conditions (4 tasks) using D0 to be familiar with the experi-
mental setup and procedure. We then instructed the partici-
pants about the strategies for finding a correct answer for
each task. During the training, we indicated to the partici-
pant whether his/her answer was correct.

4.4.2 Experiment

The tasks were presented to the participants in the same
repeated order from T1 to T4. The order of visualization
conditions (datasets (graph sizes) combinations was counter-
balanced.

The participant was allowed to rest and could continue
to the next trial when ready. Before each trial, we reset the
participant’s head position and view direction in both phys-
ical world and virtual world to remove effect from bad cali-
brations. The participant read the task description without
the graph visualization. After the participant understood
the task, then the graph visualization appeared and the task
description became hidden to maximize available display
area. The task descriptions were shown again when the par-
ticipant requested it. The participant answered the question
by selecting nodes. The participant was asked to talk loud
for proceeding to the next step rather than through a GUI to
avoid uncontrolled effect from the GUI. During experiment,
we did not give any indication to the participant on whether
an answer was correct or not.

After all trials, the participant was asked to comment on
the advantages and disadvantages of the visualization con-
ditions and point out any specific features that he/she liked
or disliked in experiment.

4.5 Hypotheses
Based on the setting of our user study, we expected to
obtain three main results:

H1: For all tasks, spherical graph layouts (C2 and C3)
would outperform 2D graph layouts (C1) in immer-
sive environments.

H2: Spherical graph layouts with depth routing (C3)
would outperform a spherical graph layout without
depth routing (C2).

4.6 Results
Overall, C2 and C3 often outperform C1, and are never out-
performed substantially by C1, confirming H1. Similarly,
C3 often outperforms C2, as in H2.

4.6.1 Task Completion Time

On average, each task took 58.39s (SD = 77.86) to complete.
A repeated measures ANOVA with a Greenhouse-

Geisser correction (" = .691) shows a significant effect of
visualization condition on task completion time (F1:38;27:63 =
16.05, p < .001). Average task completion times (Fig. 11a) are
75.77s for C1 (SD = 103.19), 56.22s for C2 (SD = 67.02), and
43.20s for C3 (SD = 50.55). Post-hoc tests using the Bonfer-
roni correction indicate that C3 is significantly faster than
both C1 (p < .0001) and C2 (p < .05), and that C2 is also sig-
nificantly faster than C1 (p < .05).

We found a significant effect of task on task completion
time (F3;60 = 10.23, p < .001). Unsurprisingly, the partici-
pants required more time to answer for more complex tasks.
Average task completion times (Fig. 11b) are 53.06 s for T1 (SD
= 80.06), 44.86 s for T2 (SD = 53.89), 76.89 s for T3 (SD =
91.75), and 58.77s for T4 (SD = 77.85).

When we analyzed the results for each task separately,
there are significant effects of visualization condition on task
completion time for T1 (F1:21;24:15 = 6.01, p < .05, " = 0.604,
using Greenhouse-Geisser correction) and T3 (F2;40 = 12.68,
p < .0001), but not T2 or T4. For T1, both C3 (p < .01) and
C2 (p < .05) are significantly faster than C1. For T3, C3 is
significantly faster than both C1 (p < .001) and C2 (p <
.05), and C2 is also significantly faster than C1 (p < .05).

Our analysis shows a significant effect of dataset (graph
size) on task completion time (F2;40 = 3.45, p < .05). As would
be expected, the participants required more time to answer
for larger graphs. Average task completion times (Fig. 11c) are
52.30 s for D1 (SD = 80.60), 56.54 s for D2 (SD = 71.75), and
66.34 s for D3 (SD = 80.54).

4.6.2 Correctness Rate

On average, 87.70 percent of the answers were correct (SD =
17.02) for all 21 participants.

While we did not observe a significant effect of visualiza-
tion condition on correctness rate (F2;40 = 2.08, p = 0.14), C3
slightly outperforms the others about 3.5 percent on aver-
age. Average correctness rate are 86.51 percent for C1, 86.51

KWON ET AL.: A STUDY OF LAYOUT, RENDERING, AND INTERACTION METHODS FOR IMMERSIVE GRAPH VISUALIZATION 1811

percent for C2, and 90.08 percent for C3 (Fig. 11d). How-
ever, there is a significant effect of visualization condition on
correctness rate (F2;40 = 6.92, p < .01) only for the largest
graph we tested (D3). For D3, average correctness rate are
80.95 percent for C1, 88.1 percent for C2, and 95.24 percent
for C3 (Fig. 11f). Post-hoc tests using the Bonferroni correc-
tion show C3 is significantly different from C1 (p < .05)
only for D3.

We found that correctness rates significantly differ
between tasks (F2:09;41:78 = 7.39, p < .01, " = .696 using Green-
house-Geisser correction). Unsurprisingly, the participants
showed higher correctness rate for easier tasks. Average cor-
rectness rate are 78.31 percent for T1, 92.59 percent for T2,
88.36 percent for T3, and 91.53 percent for T4.

We did not find a significant effect of dataset (graph size)
on correctness rate (F2;40 = 1.23, p = .30). Average correctness
rate are 88.61 percent for D1, 88.89 percent for D2, and 88.1
percent for D3.

4.6.3 Number of Interactions

We measured the number of interactions as the sum of num-
ber of pointing (mouse over on a node) þ number of
highlighting (left click on a node) þ number of selecting
(right click on a node). On average, each task took 21.06
interactions (SD = 27.39) to complete.

A repeated measures ANOVA with a Greenhouse-
Geisser correction (" = .603) shows a significant effect of
visualization conditions on number of interactions (F1:21;24:13 =
25.63, p < .0001). As shown in Fig. 11g, average number of

interactions are 28.89 for C1 (SD = 36.15), 17.75 for C2 (SD =
21.5), and 16.55 for C3 (SD = 19.87). Post-hoc tests using the
Bonferroni correction show C1 is significantly different
from C2 (p < .0001) and C3 (p < .0001).

We found a significant effect of task on number of interac-
tions (F1:58;31:55 = 19.77, p < .0001, " = .526, using Green-
house-Geisser correction) As shown in Fig. 11h, average
number of interactions are 17.42 for T1 (SD = 21.65), 15.6 for
T2 (SD = 16.68), 34.14 for T3 (SD = 38.84), and 17.09 for T4
(SD = 22.95).

When we analyzed the results for each task separately,
there are significant effects of visualization condition on num-
ber of interactions for T1 (F1:23;24:68 = 14.42, p < .001, " =
0.617, using Greenhouse-Geisser correction) and T3 (F2;40 =
28.63, p < .0001), but not T2 or T4. For both T1 and T3, both
C3 (p < .001) and C2 (p < .001) show significantly fewer
number of interactions than C1.

There is a significant effect of dataset (graph size) on num-
ber of interactions (F2;40 = 4.56, p < .05). Average number of
interactions are 19.87 for D1 (SD = 27.04), 19.29 for D2 (SD =
23.83), and 24.03 for D3 (SD = 30.73).

4.6.4 User’s Feedback

After the experiment, the participants were asked to answer
a post-questionnaire and comment on the experiment freely.

The participants were asked to choose their overall pref-
erence between the visualization conditions (or no preference).
All participants except one (who chose no preference) pre-
ferred C3 over C2 over C1.

Fig. 11. Results of the experiment. (a) shows the overall task completion time in each visualization condition, which is then broken down by tasks
(b) and datasets (graph sizes) (c). Similarly, (d-f) show correctness rate and (g-i) show number of interactions with the same breakdowns. Overall,
using C2 and C3 outperforms C1 in terms of task completion time and number of interactions. While the overall correctness rate is not significantly
different between visualization conditions, using C3 shows significantly higher correctness rate than C1 for the largest graph we tested (D3).

1812 IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, VOL. 22, NO. 7, JULY 2016

All ratings in the questionnaire were measured on a 7
point Likert scale, where toward 1 meant the negative rating
(e.g., difficult, not confident), and toward 7 was the positive
rating (e.g., easy, confident). We use the Kruskal-Wallis H
test (one-way ANOVA on ranks) to test the ratings.

We did not observe a significant difference in confidence
ratings (1: no confidence, 7: complete confidence) between
the visualization conditions (p = .16). Mean confidence ratings
were 2.95 (IQR = 2) for C1, 3.43 (IQR = 1) for C2, and 3.62
(IQR = 2) for C3.

We found a significant difference in ease-of-use ratings
(1: very difficult, 7: very easy) between the visualization con-
ditions (x2ð2Þ = 21.21, p < .0001), with mean ease -use rat-
ings on visualization conditions were 2.43 (IQR = 1) for C1,
4.33 (IQR = 3) for C2, and 4.67 (IQR = 3) for C3.

The participants responded T3 was the most difficult task
and T2 was the easiest task. We found a significant differ-
ence in task difficulty ratings (1: very difficult, 7: very easy)
between the tasks (x2ð3Þ = 27.68, p < .0001), with mean task
difficulty ratings were 3.29 (IQR = 3) for T1, 5.38 (IQR = 2)
for T2, 2.62 (IQR = 1) for T3, and 4.52 (IQR = 2) for T4. The
results of correctness rate also indicate that T1 and T3 are
more difficult than T2 or T4.

There is a significant difference in ease-of-use ratings (1:
very difficult, 7: very easy) between the datasets (graph sizes)
(x2ð2Þ = 6.04, p < .05), with mean ease-of-use ratings were
4.14 (IQR = 3) for D1, 4.43 (IQR = 2) for D2, and 3.33 (IQR =
3) for D3.

The participants offered many positive comments for C2
and C3 over C1, such as:

! “It was easier to navigate with C2 and C3”,
! “It was hard to control the cursor in C1”,
! “The nodes near corner of C1 were too far from me”,
! “C1 looks like inclined”,
! “When I highlight a node in C1 it looks like new

edges are appeared”,
! “It was difficult to follow paths in C1”.
Six participants asked “can I use zoom feature?” when

they are using C1 during the experiment. But no one asks it
when they using C2 or C3.

For the depth routing (C3) in particular, some user com-
ments were:

! “It was much less cluttered in C3”,
! “I can feel richer depth perception with C3”,
! “C1 and C2 look flat”,
! “C3 looks like coral, C2 looks like broken egg shells”,
! “C3 looks more neat”.
Three participants explicitly mentioned about the edge

crossings when using the visualization without depth rout-
ing (C1 and C2). It is natural because the edges without
depth routing are laid on same depth so it cause more edge
crossings and depth fighting (z-fighting) problem.

We also asked to the participants to report if they had
any kind of discomfort (e.g., eyestrain, disorientation, or
sickness). Two participants (one wore contact lenses,
another one had normal vision) reported they had light eye-
strain, dry eye, and felt pressure on near eye area caused by
HMD. No one reported disorientation or sickness. Two par-
ticipants reported they can clearly see pixel grid of the
HMD (also known as the screen door effect) which caused

by limited pixel-fill-factor of current HMD. However, immi-
nent hardware improvements are addressing this in the
next generation of HMDs.

4.7 Discussion
The results of the user study consistently indicate that the
spherical graph layouts (C2 and C3) are generally preferred
over the 2D graph layout (C1), and the depth routing (C3)
helps in most of the tasks. More specifically, using C2 and
C3 shows significantly shorter task completion time and a sig-
nificantly fewer number of interactions than C1 for more diffi-
cult tasks (T1 and T3). Also, using C3 shows significantly
higher correctness rate than C1 for the largest graph (D3).

Positional tracking is enabled when the 2D graph layout
was used. However, participants did not move very much
to fully utilize this tracking feature. We suspect that it is
because they were seated. This suggests in our future study
we might want to include the conditions that participants
are standing throughout the experiment.

As shown in Fig. 10, when using the 2D layout (C1), ste-
reoscopic highlighting moves the node such that it no lon-
ger coincides with the cursor. A participant would have to
move the cursor to the new position of the highlighted node
to remove highlight, which increases the number of interac-
tions and thus the time required to complete a task. A larger
FOV incurs a greater movement of the highlighted node.
For example, using FOV of 150 degree would lead to poorer
performance of participants than using FOV of 90 degree
or FOV of 120 degree. Nevertheless, smaller FOVs would
result in more clutter. There is no such a problem with
spherical layouts.

While the depth routing noticeably increases the appar-
ent legibility of the graph (as seen in Fig. 8), our user study
found that C3 only slightly outperforms C2. The highlighted
edges look very similar in C2 and C3 when spatially isolated
from the rest of the graph, while the non-highlighted ones
look very different between C2 and C3. That is, we found
that overall legibility was not as important with respect to
user performance as the interactive highlighting techniques,
probably because interactive highlighting was more rele-
vant to the specific tasks considered. A future work is thus
to study the effects on user performance with techniques
(such as depth routing) for improving the aesthetics or legi-
bility of the overall graph by using tasks, for example, on
larger scale structures or trends in the graph.

There are possibly other layouts that could work well in
an immersive environment, which we intend to explore
next. Many traditional layouts can be computed in a 3D
space and augmented with fisheye or other distortion tech-
niques. There are some graph visualizations designed for a
spherical space already, and they could map well to an
immersive environment, such as hyperbolic layouts [33].

We only conducted our study with HMDs because we
had to limit the scope of the study. In our following study,
we plan to compare HMDs with other display facilities such
as 2D monitors, wall-size displays, 3D TVs, CAVE, etc.

We have implemented a basic selection interaction
method, but there is a vast range of possible interaction
methods that are yet to be explored. While long known
about, six degree of freedom (6 DOF) input devices have
generally been too imprecise, impractical, or expensive for

KWON ET AL.: A STUDY OF LAYOUT, RENDERING, AND INTERACTION METHODS FOR IMMERSIVE GRAPH VISUALIZATION 1813

general use [61]. But just as the price has gone down and the
quality gone up for precise tracking for HMDs, so too has
the cost and quality (respectively) of precisely tracked 6
DOF input devices, raising their viability and popularity
especially in combination with immersive environments.
This suggests another direction of the investigation, as visi-
bility within HMDs limits the usage of traditional input
devices. Having a dedicated region of space within which
the user can introduce selected foci and directly investigate
an interaction is another such possibility.

5 CONCLUSION

While stereoscopic viewing has previously been shown
effective for graph visualization, ours is the first work that
achieves immersive graph visualization using a HMD with
proven effectiveness. The results of the user study show
that participants performed better using our techniques
than using traditional 2D graph visualization in an immer-
sive environment, especially for more difficult tasks and
larger graphs. Our study with a limited scope only addr-
esses a few particular design considerations. Even though
we have conducted our study with the use of a HMD, our
design should also be effective in other immersive virtual
reality environments. Our work is an early foray into
exploring virtual reality techniques for graph visualization.
More research is clearly needed before immersive 3D visu-
alization can begin to benefit real-world information visuali-
zation tasks. We hope our work and findings will encourage
others to join this exciting area of study so they can help
accelerate the development of usable technologies to meet
the growing demand of more effective tools for examining
and analyzing large complex data.

ACKNOWLEDGMENTS

This research was supported in part by the National
Research Foundation of Korea via BK21 PLUS, by the
U.S. National Science Foundation via NSF DRL-1323214
and NSF DE-FC02-12ER26072, and by UC Davis’s RISE
program.

REFERENCES

[1] A. Febretti, A.Nishimoto, T. Thigpen, J. Talandis, L. Long, J. D. Pirtle,
T. Peterka, A. Verlo, M. Brown, D. Plepys, D. Sandin, L. Renambot,
A. Johnson, and J. Leigh, “CAVE2: A hybrid reality environment for
immersive simulation and information analysis,” in Proc. Eng.
Reality Virtual Reality, article 864903, 2013.

[2] (2012). Oculus VR, LLC. Oculus Rift. [Online]. Available: https://
www.oculus.com

[3] (2015). HTC Corporation. Vive. [Online]. Available: http://www.
htcvr.com

[4] (2015). Sony Computer Entertainment Inc. PlayStation VR. [Online].
Available: https://www.playstation.com/en-us/explore/project-
morpheus

[5] (2014). Google Inc. Google Cardboard. [Online]. Available:
https://www.google.com/get/cardboard

[6] (2014). Samsung Electronics Co., Ltd. Gear VR. [Online]. Avail-
able: http://www.samsung.com/global/microsite/gearvr

[7] (2015). Microsoft. Hololens. [Online]. Available: https://www.
microsoft.com/microsoft-hololens

[8] R. Brath, “3D InfoVis is here to stay: Deal with It,” in Proc. IEEE
VIS Int. Workshop 3DVis, 2014, pp. 25–31.

[9] J. P.McIntire andK.K. Liggett, “The (possible) utility of stereoscopic
3D displays for information visualization: The good, the bad, and
the ugly,” in Proc. IEEEVIS Int.Workshop 3DVis, 2014, pp. 1–9.

[10] C. Ware and P. Mitchell, “Reevaluating stereo and motion cues for
visualizing graphs in three dimensions,” in Proc. Symp. Appl. Per-
ception Graph. Vis., 2005, pp. 51–58.

[11] C. Ware and P. Mitchell, “Visualizing graphs in three
dimensions,” ACM Trans. Appl. Percept., vol. 5, no. 1, article 2,
2008.

[12] B. Alper, T. Hollerer, J. Kuchera-Morin, and A. Forbes,
“Stereoscopic highlighting: 2D graph visualization on stereo dis-
plays,” IEEE Trans. Vis. Comput. Graphics, vol. 17, no. 12, pp. 2325–
2333, Dec. 2011.

[13] N. Greffard, F. Picarougne, and P. Kuntz, “Beyond the classical
monoscopic 3d in graph analytics: An experimental study of the
impact of stereoscopy,” in Proc. IEEE VIS Int. Workshop 3DVis,
2014, pp. 19–24.

[14] O.-H. Kwon, C. Muelder, K. Lee, and K.-L. Ma, “Spherical layout
and rendering methods for immersive graph visualization,” in
Proc. IEEE Pacific Vis. Symp., 2015, pp. 63–67.

[15] S. Bryson, “Virtual reality in scientific visualization,” Commun.
ACM, vol. 39, no. 5, pp. 62–71, 1996.

[16] F.P. Brooks, “What’s real about virtual reality?” IEEE Comput.
Graph. Appl, vol. 19, no. 6, pp. 16–27, Nov. 1999.

[17] A. van Dam, A. Forsberg, D. Laidlaw, J. LaViola, and R. Simpson,
“Immersive VR for scientific visualization: A progress report,”
IEEE Comput. Graph. Appl, vol. 20, no. 6, pp. 26–52, Nov./Dec.
2000.

[18] R. Bennett, D. J. Zielinski, and R. Kopper, “Comparison of interac-
tive environments for the archaeological exploration of 3D
landscape data,” in Proc. IEEE VIS Int. Workshop 3DVis, 2014,
pp. 67–71.

[19] C. H. B. Weyers, B. Hentschel, and T. W. Kuhlen, “Interactive vol-
ume rendering for immersive virtual environments,” in Proc.
IEEE VIS Int. Workshop 3DVis, 2014, pp. 73–74.

[20] K. Mirhosseini, Q. Sun, K. C. Gurijala, B. Laha, and A. E. Kauf-
man, “Benefits of 3D immersion for virtual colonoscopy,” in Proc.
IEEE VIS Int. Workshop 3DVis, 2014, pp. 75–79.

[21] A. Teyseyre and M. Campo, “An overview of 3D software visual-
ization,” IEEE Trans. Vis. Comput. Graph., vol. 15, no. 1, pp. 87–105,
Jan./Feb. 2009.

[22] C. Ware, Information Visualization: Perception for Design. San Mateo,
CA, USA: Morgan Kaufmann, 2004.

[23] J. E. Cutting and P. M. Vishton, “Perceiving layout and knowing
distances: The integration, relative potency, and contextual use
of different information about depth,” in Perception of Space and
Motion, ser. Handbook of Perception and Cognition, W. Epstein
and S. Rogers, Eds. Orlando, FL, USA:Academic, 1995, pp. 69–117.

[24] C. Ware and G. Franck, “Evaluating stereo and motion cues for
visualizing information nets in three dimensions,” ACM Trans.
Graph., vol. 15, no. 2, pp. 121–140, 1996.

[25] H. Halpin, D. J. Zielinski, R. Brady, and G. Kelly, “Exploring
semantic social networks using virtual reality,” in Proc. Int. Seman-
tic Web Conf., 2008, pp. 599–614.

[26] F. Barahimi and S. Wismath, “3D graph visualization with the
oculus rift,” in Proc. 22nd Int. Symp. Graph Drawing, 2014, pp. 519–
520.

[27] I. Herman, G. Melancon, and M. Marshall, “Graph visualization
and navigation in information visualization: A survey,” IEEE
Trans. Vis. Comput. Graph., vol. 6, no. 1, pp. 24–43, Jan.–Mar. 2000.

[28] T. Munzner, “Exploring large graphs in 3D hyperbolic space,”
IEEE Comput. Graph. Appl, vol. 18, no. 4, pp. 18–23, Jul. 1998.

[29] T. Hughes, Y. Hyun, and D. Liberles, “Visualising very large phy-
logenetic trees in three dimensional hyperbolic space,” BMC Bio-
informat., vol. 5, no. 1, 2004.

[30] T. Sprenger, M. Gross, A. Eggenberger, and M. Kaufmann, “A
framework for physically-based information visualization,” in
Visualization in Scientific Computing. New York, NY, USA:
Springer, 1997, pp. 71–83.

[31] Y. Wu and M. Takatsuka, “Visualizing multivariate network on
the surface of a sphere,” in Proc. Asia-Pacific Symp. Inf. Vis., 2006,
pp. 77–83.

[32] S. G. Kobourov and K. Wampler, “Non-Euclidean spring
embedders,” IEEE Trans. Vis. Comput. Graphics, vol. 11, no. 6,
pp. 757–767, Nov./Dec. 2005.

[33] T. Munzner, “H3: Laying out large directed graphs in 3D hyper-
bolic space,” in Proc. IEEE Symp. Inf. Vis., 1997, pp. 2–10.

[34] D. Holten, “Hierarchical edge bundles: Visualization of adjacency
relations in hierarchical data,” IEEE Trans. Vis. Comput. Graphics,
vol. 12, no. 5, pp. 741–748, Sep./Oct. 2006.

1814 IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, VOL. 22, NO. 7, JULY 2016

[35] O. Ersoy, C. Hurter, F. Paulovich, G. Cantareiro, and A. Telea,
“Skeleton-based edge bundling for graph visualization,” IEEE
Trans. Vis. Comput. Graph., vol. 17, no. 12, pp. 2364–2373,
Dec. 2011.

[36] D. Holten and J. J. van Wijk, “Force-directed edge bundling for
graph visualization,” in Proc. Eurographics/IEEE-VGTC Conf. Vis.,
2009, pp. 983–998.

[37] O. Mallo, R. Peikert, C. Sigg, and F. Sadlo, “Illuminated lines
revisited,” in Proc. IEEE Vis., 2005, pp. 19–26.

[38] D. C. Banks and C.-F. Westin, “Global illumination of white mat-
ter fibers from DT-MRI data,” in Visualization in Medicine and Life
Sciences. New York, NY, USA: Springer, 2008, pp. 173–184.

[39] S. Eichelbaum, M. Hlawitschka, and G. Scheuermann, “LineAO—
Improved three-dimensional line rendering,” IEEE Trans. Vis.
Comput. Graph., vol. 19, no. 3, pp. 433–445, Mar. 2013.

[40] M. H. Everts, H. Bekker, J. B. T. M. Roerdink, and T. Isenberg,
“Depth-dependent halos: Illustrative rendering of dense line
data,” IEEE Trans. Vis. Comput. Graphics, vol. 15, no. 6, pp. 1299–
1306, Nov./Dec. 2009.

[41] M. H. Everts, H. Bekker, J. B. T. M. Roerdink, and T. Isenberg,
“Flow visualization using illustrative line styles,” in Proc. Nat.
ICT.Open/SIRENWorkshop, article 44, 2011.

[42] M. Luboschik and H. Schumann, “Illustrative halos in information
visualization,” in Proc. Working Conf. Adv. Vis. Interfaces, 2008,
pp. 384–387.

[43] B. Jenny, “Adaptive composite map projections,” IEEE Trans. Vis.
Comput. Graphics, vol. 18, no. 12, pp. 2575–2582, Dec. 2012.

[44] C. W. Muelder and K.-L. Ma, “A treemap based method for rapid
layout of large graphs,” in Proc. IEEE Pacific Vis. Symp., 2008,
pp. 231–238.

[45] C. W. Muelder and K.-L. Ma, “Rapid graph layout using space fill-
ing curves,” IEEE Trans. Vis. Comput. Graphics, vol. 14, no. 6,
pp. 1301–1308, Nov./Dec. 2008.

[46] H. S. M. Coxeter, Introduction to Geometry. New York, NY, USA:
Wiley, 1969.

[47] J. M. Dennis, “Partitioning with space-filling curves on the cubed-
sphere,” in Proc. Parallel Distrib. Process. Symp., 2003, pp. 6–11.

[48] (1995). NASA. Space flight human-system standard volumes 1.
[Online]. Available: http://msis.jsc.nasa.gov/volume1.htm

[49] J. W. Youdas, T. R. Garrett, V. J. Suman, C. L. Bogard, H. O. Hall-
man, and J. R. Carey, “Normal range of motion of the cervical
Spine: An initial goniometric study,” Phys. Therapy, vol. 72, no. 11,
pp. 770–780, 1992.

[50] C. de Boor, “On calculating with B-splines,” J. Approximation The-
ory, vol. 6, no. 1, pp. 50–62, 1972.

[51] K. Shoemake, “Animating rotation with quaternion curves,” ACM
SIGGRAPH Comput. Graph., vol. 19, no. 3, pp. 245–254, 1985.

[52] S. R. Buss and J. P. Fillmore, “Spherical averages and applications
to spherical splines and interpolation,” ACM Trans. Graph.,
vol. 20, no. 2, pp. 95–126, 2001.

[53] M.-J. Kim, M.-S. Kim, and S. Y. Shin, “A general construction
scheme for unit quaternion curves with simple high order deriva-
tives,” in Proc. Ann. Conf. Comput. Graph. Interactive Techn., 1995,
pp. 369–376.

[54] (2012). Epic Games. Unreal Engine 4. [Online]. Available: https://
www.unrealengine.com

[55] (2010). Leap Motion, Inc. Leap Motion. [Online]. Available:
https://www.leapmotion.com

[56] Prabhat, A. Forsberg, M. Katzourin, K. Wharton, and M. Slater,
“A comparative study of desktop, fishtank, and cave systems
for the exploration of volume rendered confocal data sets,”
IEEE Trans. Vis. Comput. Graphics, vol. 14, no. 3, pp. 551–563,
May/Jun. 2008.

[57] W. W. Zachary, “An information flow model for conflict and fis-
sion in small groups,” J. Anthropolog. Res., vol. 30, pp. 452–473,
1977.

[58] D. E. Knuth, The Stanford GraphBase: A Platform for Combinatorial
Computing. Reading, MA, USA: Addison-Wesley, 1993.

[59] M. Girvan and M. E. J. Newman, “Community structure in social
and biological networks,” Proc. Nat. Acad. Sci. USA, vol. 99, no. 12,
pp. 7821–7826, 2002.

[60] D. J. Watts and S. H. Strogatz, “Collective dynamics of ‘small-
world’ networks,” Nature, vol. 393, pp. 440–442, 1998.

[61] S. Zhai, “User performance in relation to 3D input device design,”
ACM SIGGRAPH Comput. Graph., vol. 32, no. 4, pp. 50–54, 1998.

Oh-Hyun Kwon received the Bachelor’s degree
in digital media from the Ajou University in 2013.
He is currently working toward the PhD degree at
the University of California, Davis and the Ajou
University. His research interests include infor-
mation visualization, computer graphics, and vir-
tual reality. He is a student member of the IEEE.

Chris Muelder received the PhD degree in com-
puter science from the University of California at
Davis in 2011. He then was a postdoctoral
researcher with the VIDI Labs at UC Davis during
2011-2014. His research interests include infor-
mation visualization and visual analytics. He is
currently with Google as a software engineer. He
is a member of the IEEE.

Kyungwon Lee received the MFA degree in
computer graphics and interactive media from
the Pratt Institute in 2002. He is a professor in the
Department of Digital Media and the director of
Integrated Design Lab at the Ajou University. His
research interests include information visualiza-
tion, human-computer interaction, and media art.
He is a member of the IEEE.

Kwan-Liu Ma received the PhD degree in com-
puter science from the University of Utah in 1993.
He is a professor of computer science and the
chair of the Graduate Group in Computer Science
(GGCS) at the University of California, Davis. He
leads VIDI Labs and and the UC Davis Center for
Visualization. His research interests include visu-
alization, high-performance computing, and user
interface design. He received the US National
Science Foundation (NSF) PECASE award in
2000, and the IEEE VGTC 2013 Visualization

Technical Achievement Award. He has served as a papers chair for Sci-
Vis, InfoVis, EuroVis, and PacificVis, and also as an associate editor of
IEEE TVCG (2007-2011) and the Journal of Computational Science and
Discoveries (2009-2014). He is a founder of PacificVis, Ultravis, and
LDAV. He presently serves on the editorial boards of the IEEE CG&A
and the Journal of Visualization. He is a fellow of the IEEE.

" For more information on this or any other computing topic,
please visit our Digital Library at www.computer.org/publications/dlib.

KWON ET AL.: A STUDY OF LAYOUT, RENDERING, AND INTERACTION METHODS FOR IMMERSIVE GRAPH VISUALIZATION 1815

